
Abstract. It is shown that the Jackels–Gu–Truhlar pro-
jection technique for computing harmonic frequencies
along the intrinsic reaction path is equivalent to use of a
new, enormously broad family of the so-called hyper-
planar-vibrational-surface (HVS) reaction coordinates,
namely, for any arbitrarily chosen set of internal vari-
ables r, the appropriate HVS reaction coordinate, sr, is
implicitly defined via the requirement that it remains
constant on any so-called orthogonal-to-path hyper-
plane in the coordinate space spanned by variables r. It
is proven that sr defined in such a way satisfies the local
Hofacker–Marcus conditions and therefore there is no
linear term in a Taylor expansion of the potential in
terms of vibrational coordinates Qr. Since the transfor-
mation from Qr and sr to r is explicitly defined, one can
use a standard technique to account for potential
anharmonicities along the reaction path.

Keywords: Intrinsic reaction path – Reaction
coordinate – Harmonic frequencies – Jackels–Gu–
Truhlar projection technique

Introduction

One of main advantages of harmonic vibrational
analysis in molecular spectroscopy is that the particular
choice of vibrational coordinates in a Taylor series
expansion of the molecular Hamiltonian has no effect on
the values of the harmonic frequencies [1]. On the con-
trary, as initially pointed by the author [2] and explicitly
demonstrated in Ref. [3], harmonic vibrational fre-
quencies evaluated along a reaction path do depend on

the choice of a reaction coordinate in the vicinity of the
path.

A generally applicable method for computing har-
monic vibrational frequencies along the gradient-fol-
lowing path in the space of mass-weighted Cartesian
coordinates [4, 5, 6, 7] (often referred to as ‘‘intrinsic’’
reaction path [8]) was suggested in the broadly cited
work of Miller et al. [9]. Since the method formally deals
with a potential expansion in the space of mass-weighted
Cartesian coordinates, it gives an impression that com-
putation of harmonic vibrational frequencies is per-
formed in a ‘‘universal fashion’’, with no need to specify
the behavior of the reaction coordinate near the reaction
path. It turns out that the choice of the reaction coor-
dinate is implicitly embedded in the projection tech-
nique, which requires the nuclear displacements in space
to satisfy the Eckart–Sayvetz constraints [10, 11].

As proven by the author [2], the Miller–Handy–
Adams projection technique [9] is equivalent to using the
so-called [2] least-squares reaction coordinate, sLS,
which maps each point in a space of rotating nuclear
configurations to the closest point on the reaction path.
(In the subspace of collinear triatomic configurations the
least-squares set of variables coincides with Marcus’
collision coordinates s and x [12].) As originally shown
in Ref. [13], extremum conditions for the least-squares
algorithm used in Ref. [2] to define the reaction coor-
dinate sLS are equivalent to the rectilinear Eckart–Say-
vetz constraints [10, 11] on nuclear displacements
measured relative to the body-fixed frame. Since a
transformation to a body-fixed frame keeps the potential
unchanged, an expansion of the potential as a Taylor
series in terms of Miller–Handy–Adams generalized
normal modes is equivalent to its expansion in terms of
rectilinear vibrational coordinates, which are introduced
via the Eckart–Sayvetz constraints [10, 11] in the
body-fixed frame and therefore are internal variables by
definition. Compared with the Miller–Handy–Adams
approach [9] dealing with nuclear displacements in
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space, the accurate separation of internal motions from
overall rotations leads to some additional kinematic
coupling terms even at zero angular momentum. Con-
trary to the critical remarks made recently by Okuno
et al. [14] (see Ref. [15] for a more detailed response), the
author [2, 16] perfectly understood this deficiency of the
Miller–Handy–Adams projection technique, but, as
pointed out in Ref. [16], the resultant differences
between the Miller–Handy–Adams [9] and Hougen–
Bunker–Jones [17] Hamiltonians have only a small effect
on practical computations of chemical reaction rates.

Note that a power expansion of an N-atom potential
in terms of 3N)3 Cartesian deviations from the reaction
path in the center-of-mass system [18] would generally
lead to 3N)3 nonzero frequencies because infinitesimal
rotations are eigenvectors of the quadratic potential
form only in equilibrium configurations. As nuclei move
away from a saddle point along the reaction path, some
of three zero frequencies associated with infinitesimal
rotations may become imaginary, whereas eigenvectors
describing normal vibrations near the saddle point turn
into superpositions of vibrations and infinitesimal rota-
tions. By imposing the Eckart–Sayvetz constraints on
nuclear motions in space, Miller et al. [9] managed to go
around this problem.

To compute harmonic frequencies along a collinear
reaction path for an atom–diatom exchange reaction,
Garrett and Truhlar suggested a different, more specific
recipe [19, 20], which was related by the author [21, 22]
to a reaction coordinate of a special type. The latter was
defined as a function of bond lengths only and was
therefore referred to as the ‘‘bond-length’’ reaction
coordinate, sBL. A systematic comparison between
bending vibrational frequencies associated with the two
reaction coordinates, sLS and sBL, was performed in
Ref. [3] for the collinear reactions H+H2 fi H2+H and
O+H2 fi OH+H. Our analysis revealed significant
deficiencies of the rectilinear approach. In particular, the
bending frequency associated with the least-squares
reaction coordinate rapidly vanished and even became
imaginary over a wide fragment of the reaction path
away from the vicinity of the saddle point. In contrast,
the bending frequency computed at fixed values of bond
lengths remained positive over the whole range of
the reaction coordinate. Use of a similar bond-length
reaction coordinate for the polyatomic reaction
CH3+H2 fi CH4+H [3] again resulted in a much
slower asymptotic change of harmonic frequencies for
two of the four doubly degenerate symmetry-breaking
modes, compared with the behavior of their counter-
parts computed using the Miller–Handy–Adams pro-
jection technique [9].

This analysis stimulated a search for a universal
method, which would allow one to compute harmonic
frequencies of nuclear vibrations associated with purely
geometrical deformations of the molecular system in
question. Such a method referred to here as the Jackels–
Gu–Truhlar projection technique [23] was developed
and thoroughly studied by Truhlar and collaborators in

a series of the papers [23, 24, 25] covering a broad
variety of chemical reactions. The purpose of this paper
is to demonstrate that the Jackels–Gu–Truhlar projec-
tion technique is equivalent to the use of a new,
enormously broad family of the so-called hyperplanar-
vibrational-surface (HVS) reaction coordinates, sr,
where the superscript r is used to emphasize that the
definition of the reaction coordinate depends on the
choice of internal variables r ” {r1,..., rF}; namely,
by definition, sr remains constant on any hyperplane
drawn in the space of variables r under the constraint
that it must be orthogonal to the reaction path at their
crossing point. The appropriate vibrational coordinates
Qr � Qr

1 ; . . . ; Qr
C

� �
;, where G=F)1, are then intro-

duced via simple linear relations, which visualize gen-
eralized normal modes in the Jackels–Gu–Truhlar
projection technique. (It should be pointed out that the
present analysis deals exclusively with F=3N)6 inde-
pendent internal variables and therefore does not cover
an extension [26] of the cited projection technique [23,
24, 25] to redundant internal variables.)

By expressing the Hamiltonian in terms of Qr

and sr and neglecting anharmonic terms, one can
approximately separate harmonic vibrations from the
large-amplitude motion along the reaction path. This
justifies the use of the projection technique, which was
formally introduced by Jackels et al. [23], to a large
degree by analogy with the conventional Wilson GF
matrix method [1] of the harmonic analysis near an
equilibrium configuration. Knowing the exact trans-
formation from F=3N)6 independent internal vari-
ables r to Qr and sr allows one to account
for potential anharmonicities using the ‘‘independent-
normal-mode’’ (INM) approximation [27, 28], for
example.

Definition of the HVS reaction coordinate

Let r0 sð Þ � r1
0; . . . ; rF

0

� �
be a reaction path in the

coordinate space spanned by variables r. (In the fol-
lowing we will refer to this space simply as r space.) The
so-called HVS for a point s of the path is defined via the
following equation for a hyperplane in the r space:

X

l;l0
rl � rl

0 sð Þ
� �

/Cll0 sð Þ drl0

0

d s
¼ 0: ð1Þ

It directly follows from Eq. (1) that the path crosses
the hyperplane along the direction that is orthogonal to
the hyperplane under the metric /Cll0 . The metric matrix /C
with elements /Cll0 is chosen to be the inverse of the
matrix /G with elements

/Gll0 ¼ rT
rlrrl0 ; ð2Þ

where rrl is the gradient of rl with respect to mass-
weighted Cartesian coordinates and the superscript T
denotes a transported matrix (i.e., a row instead of a
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column in the given equation). To simplify the notation,
we omit the argument r in the definitions of matrix /G
and its inverse /C. Moreover, since we are only interested
in values of their elements at points r=r0(s) lying on the
reaction path, the latter are simply denoted in the fol-
lowing as /Gll0 sð Þ and /Cll0 sð Þ, respectively, instead of
/Gll0 r0 sð Þ½ � and /Cll0 r0 sð Þ½ �. Since the metric /C is non-
Euclidean [2], the ‘‘orthogonal-to-path’’ hyperplane
generally turns into a curved surface when transformed
to another coordinate space; however, this surface is still
orthogonal to the path at their crossing point (under the
metric of our interest!).

Vibrational coordinates Qr and the reaction coordi-
nate sr are then implicitly defined using the following
quasi-linear relations:

rl ¼ rl
0 srð Þ þ

XC

r¼1
/Ll

r srð ÞQr
r for l¼ 1;:::; F ; ð3Þ

where /Ll
r sð Þ are components of G linear independent

vectors /LrðsÞ orthogonal to the path at the point s, i.e.,

X

l;l0
/Ll

r sð Þ /Cll0 sð Þ
drl0

0

d s
¼ 0: ð4Þ

Since vibrational coordinates Qr describe small-
amplitude oscillations near the reaction path r0(s),
there should be no linear term in a Taylor series
expansion of V in terms of Qr at any point s of the
path. In addition, to eliminate kinematic coupling
between vibrations and large-amplitude internal motion
along the reaction path [2], the reaction coordinate sr

must satisfy [2] the so-called local Hofacker–Marcus
conditions [5, 29]. As proven in Ref. [2], both require-
ments may be fulfilled [2] only along the so-called
internal intrinsic reaction path [2, 30] governed by the
equation [5]

drl
0

d s
¼ �

X

l0
/Gl l0 sð Þ gl0 sð Þ

�
g sð Þ forl¼ 1;:::;F ; ð5Þ

where gl(s) is the derivative of the potential V with
respect to rl at r=r0(s). It is worth pointing out that
Eq. (5) describes a path in the space of 3N)6 internal
variables and therefore differs from reminiscent Eq. (9)
in Marcus’ pioneering paper [5] dealing with 3N cur-
vilinear coordinates (including overall rotations and
translational motions of the center of mass). Since
matrix elements /Gll0 and components of the contra-
variant metric tensor defined via Marcus’ Eq. (4)
coincide in the space of internal variables r, whereas
the potential function V is independent of external
variables, our Eq. (5) is a subset of Marcus’ Eq. (9). A
more important difference between the two ap-
proaches, however, comes from the covariant metric
tensor (see Eq. (2) in Ref. [5]), because its components
associated with internal variables depend on the choice

of the body-fixed frame and generally differ from
matrix elements /Cll0 . As a result, to exclude external
motions from Marcus’ analysis [5], one needs to use
matrix elements /Cll0 instead of the appropriate com-
ponents of the covariant metric tensor. If the variable s
used to parameterize the path is chosen to satisfy the
relation

X

l;l0
/Cll0 sð Þ drl

0

ds
drl0

0

ds
� 1; ð6Þ

then the function g(s) coincides with the magnitude of
the potential gradient, i.e.,

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

l;l0
/Gl l0 sð Þ gl sð Þ gl0 sð Þ

s
: ð7Þ

One can also represent Eqs. (5) and (7) in an equiv-
alent form,

drl
0

ds
¼ � rT

rlrV
� �

�r¼�a sð Þ

	
g sð Þ for l ¼ 1;:::;F ; ð8Þ

and

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT

V rV

q 




�r¼�a sð Þ

; ð9Þ

where a�(s) is the gradient-following path in the space of
3N-dimensional vectors r� formed by mass-weighted
Cartesian coordinates [4, 5, 6, 7, 8]. An analysis of
Eq. (8) shows that the internal intrinsic reaction path
defined via Eqs. (5) and (7) is nothing but a trace of a�(s)
in the space of internal variables r [2]. To eliminate the
linear term in a Taylor series expansion of V, one also
needs to require [2] that the reaction coordinate in
question satisfies the ‘‘local’’ Hofacker–Marcus condi-
tions:

rT
srrQr

r

� �

r¼r0 sð Þ
� 0 for r¼ 1;:::;C: ð10Þ

In fact, representing the latter equations in an
equivalent form,

X

l;l0
/Gll0 sð Þ @sr

@rl

@Qr
r

@rl0

� �

r¼r0 sð Þ
� 0 for r ¼ 1;:::;C;

ð11Þ

and combining these orthogonality conditions with the
normalization condition given by Eq. (6), one finds

@sr

@rl






r¼r0 sð Þ

¼
X

l0
/Cll0 sð Þ drl0

0

ds
ð12Þ

or, making use of Eq. (5),
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@sr

@rl






r¼r0 sð Þ

¼ �gl sð Þ
�

g sð Þ: ð13Þ

Taking into account that

@V
@Qr






sr¼s; Qr¼0

¼
X

l

gl sð Þ@r
l

@Qr






sr¼s; Qr¼0

; ð14Þ

one can immediately verify that

@V
@Qr






sr¼s; Qr¼0

¼ 0; ð15Þ

as required.
To prove that the HVS reaction coordinate sr does

satisfy Eq. (12), one simply needs to differentiate Eq. (3)
with respect to rl, put Qr equal to 0, and then substitute
Eqs. (4) and (6) into the convolution of the resultant
expression

dl0

l ¼
drl0

0

ds
@sr

@rl







r¼r0 sð Þ

þ
X/C

r¼1
/Ll0

r sð Þ@Qr
r

@rl






r¼r0 sð Þ

ð16Þ

with the covariant vector in the right-hand side of
Eq. (12). This completes the proof, since Hofacker–
Marcus conditions (Eq. 11) are automatically fulfilled if
a reaction coordinate satisfies Eq. (12).

Let us put

/Ll
F sð Þ � drl

0

ds
; ð17Þ

so that the F · F matrix /L sð Þ with elements /Ll
j sð Þ is

formed by first derivatives of rl with respect to Qr and
sr at Qr=0 and sr=s. By using the appropriate G · G
s-dependent linear transformation, one can also choose
the first F)1 columns of this matrix to be mutually
orthogonal and normalized under the metric /Cll0 sð Þ so
that

X

l;l0
/Ll

r sð Þ /Cll0 sð Þ /Ll0

r0 sð Þ � drr0 for r;r0 ¼ 1;:::; C: ð18Þ

By combining the latter relation with Eqs. (4) and (6),
one finds

/LT sð Þ /C sð Þ /L sð Þ � 1F; ð19Þ

where 1F is the F · F identity matrix. An analysis of the
inverse relation,

/L�1 sð Þ /G sð Þ /L�1 sð Þ
� �T � 1F; ð20Þ

shows that the G · G matrix G(s) with elements

Grr0 sð Þ �
X

l;l0
/Gll0 sð Þ @Qr

r

@rl

@Qr
r0

@rl0

� �

r¼r0 sð Þ
ð21Þ

coincides with the identity matrix at each point of the
reaction path, i.e.,

Grr0 sð Þ � drr0 : ð22Þ

For each values of s one can find a G · G orthogonal
matrix, which (in following the conventional harmonic
analysis of molecular systems [1]) diagonalizes the force
matrix F(s) with elements

Frr0 sð Þ � @2V
@Qr

r @Qr
r0

� �

sr¼s; Qr¼0
; ð23Þ

so that

Frr0 sð Þ ¼ Kr sð Þdrr0 : ð24Þ

We thus conclude that the coefficients /Ll
r sð Þ in

transformation in Eq. (3) can be always chosen to
satisfy Eqs. (22) and (24), where the matrices G(s) and
F(s) are defined via Eqs. (21) and (23), respectively.
Keeping in mind the erroneous [15] comments by
Okuno et al. [14], it is worth pointing out once again
[2, 3] that the matrix G(s)F(s) undergoes an s-depen-
dent similarity transformation under any linear trans-
formation of vibrational coordinates at a fixed value of
the reaction coordinate and therefore its eigenvalues
must remain unchanged regardless of which set of
vibrational coordinates is used to compute harmonic
frequencies.

It will be shown in next section that diagonal ele-
ments of the matrix F(s) coincide with nonzero diagonal
elements Lrr of the matrix L in the right-hand side of
Eq. (22) in Ref. [23], which implies that the Jackels–Gu–
Truhlar projection technique can be used as a useful
practical tool for computing the harmonic vibrational
frequencies

xr
r sð Þ ¼ K1=2

r sð Þ ð25Þ

associated with the reaction coordinate sr. (To be fully
consistent, we should also mark the matrix F(s), its
matrix elements Frr¢(s) and its eigenvalues Kr sð Þ by the
superscript r; however, for simplicity we will keep it only
in the notation of harmonic frequencies xr

r sð Þ to be able
to distinguish between computations using different sets
of internal variables.)

Numerical equivalence of the two algorithms for compuing
harmonic frequencies along the intrinsic reaction path

Let us now prove that each column of the matrix /L sð Þ is
an eigenvector of the matrix

/KP sð Þ � /G sð Þ /F P sð Þ; ð26Þ

used in the Jackels–Gu–Truhlar projection technique
[23] to compute harmonic vibrational frequencies along
the reaction path. Here we put
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/F P sð Þ � 1F � /PT sð Þ
� �

/F sð Þ 1F � /P sð Þ½ �; ð27Þ

where /F sð Þ is an F · F force constant matrix with ele-
ments

/Fll0 sð Þ ¼ @2 V
@rl@rl0

� �

r¼r0 sð Þ
ð28Þ

and /P sð Þ is the projection matrix with elements

/P l
l0 sð Þ ¼ gl0 sð Þ

X

l00
/Gll00 sð Þgl00 sð Þ

�
g2 sð Þ ð29aÞ

i.e., the matrix h*(s)p(s) in Eq. (21) of Jackels et al. [23].
Making use of Eqs. (5) and (13), one can also represent
these matrix elements in an equivalent form:

/P l
l0 sð Þ ¼ drl

0

ds
@sr

@rl0






r¼r0 sð Þ

; ð29bÞ

and hence the last column of /L sð Þ (see Eq. 17) is an
eigenvector of matrix /KP sð Þ associated with a zero
eigenvalue.

It is a little more difficult to prove that other columns
/Lr sð Þ of /L sð Þ, with r<F, are eigenvectors of matrix /KP sð Þ
associated with its positive eigenvalues. To do it, let us
first represent the latter matrix in a slightly different, but
equivalent, form:

/KP sð Þ ¼ 1F � /P sð Þ½ � /K sð Þ 1F � /P sð Þ½ �; ð30Þ

which is reminiscent of Eq. (1.5a) of Miller et al. [9].
Here we put

/K sð Þ � /G sð Þ /F sð Þ ð31Þ

and also took into account that, according to Eqs. (12)
and (29b), /P sð Þ /G sð Þ is a symmetric matrix. (Note that
similar arguments were used in Ref. [15] to prove that
Okuno’s projected covariant Hessian matrix approach
[31] is equivalent to the covariant Hessian matrix for-
malism suggested by the author [30].) Taking into
account that

@rl

@Qr
r

� �

sr¼s

¼ /Ll
r sð Þ ð32Þ

and making use of Eq. (29b), one finds that

1F � /P sð Þ½ � /Lr sð Þ � /Lr sð Þ for r¼ 1; 2;:::;C: ð33Þ

Since each column of the matrix /L sð Þ is formed by
derivatives of one of the variables r with respect to Qr

r
and sr (the first F)1 elements of the given column and
its last element, respectively, with all derivatives
computed at Qr=0 and sr=s), the rth row of
the inverse matrix /L�1 sð Þ is composed (for any r<F)
by derivatives of Qr

r with respect to r at r=r0(s) so
that

/L�1 sð Þ 1F � /P sð Þ½ �
� �

rl ¼
@Qr

r

@rl

� �

sr¼s; Qr¼0
for r\F ;

ð34Þ

and hence, making use of Eqs. (11), (21), and (22),

/L�1 sð Þ 1F � /P sð Þ½ � /G sð Þ
� �l

r ¼ /Ll
r sð Þ for r\F : ð35Þ

Taking into account that second derivatives of r with
respect to Qr

r are identically equal to zero, one can easily
verify that

Frr0 sð Þ � /LT
r sð Þ /F sð Þ /Lr0 sð Þ ð36Þ

(contrary to a general expression, which also contains
first derivatives of the potential in its right-hand side)
and therefore Eq. (24) can be represented as

/LT
r sð Þ /F sð Þ /Lr0 sð Þ ¼ Kr sð Þdrr0 : ð37Þ

By combining Eq. (35) with Eqs. (30) and (31) and
making use of Eq. (37), one finds

/L�1 sð Þ /KP sð Þ /L sð Þ
� �

rr0 ¼ Kr sð Þ drr0 for r;r0\F : ð38Þ

One can also verify that

/L�1 sð Þ /KP sð Þ /L sð Þ
� �

Fr0 � 0 for r0\F ; ð39Þ

taking into account that the last row of the matrix /L�1 sð Þ
is formed by derivatives of sr with respect to rl at sr=s
and Qr=0, and therefore

/L�1 sð Þ 1F � /P sð Þ½ �
� �l

F � 0: ð40Þ

This completes the proof that each column of /L sð Þ is
an eigenvector of the matrix /KP sð Þ such that the
appropriate eigenvalue coincides with a diagonal ele-
ment of the matrix F(s) for the first F)1 columns and is
equal to zero for the last one.

By representing Eq. (20) in an equivalent form,

/L sð Þ /LT sð Þ � /G sð Þ; ð41Þ

(similar to Eq. (23) in Ref. [23]), one finds that the
normalization of eigenvectors is done here in exactly
the same way as in Ref. [23], so that columns of the
matrix /L sð Þ must coincide with normalized eigenvec-
tors describing generalized normal modes in the Jac-
kels–Gu–Truhlar approach [23]. Assuming that the
matrix F(s) has only nonzero eigenvalues and that all
its eigenvalues are nondegenerate, we can use directly
the normalized eigenvectors associated with nonzero
eigenvalues in the Jackels–Gu–Truhlar projection
technique [23] to define the transformation in Eq. (3).
The Jackels–Gu–Truhlar algorithm can be thus viewed

72



as an efficient utilization of a general approach to
separate vibrations from a large-amplitude motion
along the intrinsic reaction path [2], namely, the
appropriate harmonic frequencies can be obtained by
expressing the Hamiltonian in terms of internal vari-
ables Qr and srdefined via Eq. (3) and then neglecting
both potential and kinematic vibrational anharmonic-
ities in the neighborhood of the reaction path. It is
worth pointing out again that there is no linear term
in the expansion of a potential as a Taylor series of
Qr, since the reaction coordinate sr satisfies the local
Hofacker–Marcus conditions.

Incorporation of vibrational anharmonicities
into computations of partition functions

The main advantage of the scheme dealing with
approximate separation of motions (compared with
projection techniques [9, 23]) is that neglected terms can
be brought back using perturbation theory, for instance.
It was Garrett and Truhlar [32] who emphasized the
importance of incorporating bending anharmonicity in
computations of transition-state rate constants of atom–
diatom exchange reactions. It was explicitly demon-
strated that correction of the bending partition function
for quartic bending anharmonicity using energy levels of
the harmonic-quartic oscillator [33] significantly im-
proved the computation accuracy. This idea was later
extended to polyatomic reactions within the INM
approximation [27, 28] using energy levels of Morse and
quadratic-quartic oscillators for stretching and bending
modes, respectively.

As emphasized by Jackels, et al. [23], the use of
deviations of bond lengths and bending angles from
their values on the reaction path, instead of rectilinear
vibrational coordinates, ‘‘reduces the importance of
anharmonic bend–stretch interactions’’ [34, 35] (espe-
cially, if stretching and bending modes are separable in
the harmonic approximation, as it happens for a col-
linear reactions path, for example).

If couplings between different modes are not neg-
ligible, they can be included using the Dunham for-
mula for the quantized total energy [36]. As pointed
out by Truhlar et al. [35], use of this formula allows
one to ‘‘obtain reasonable simple analytical approxi-
mations to the vibrational partition functions and free-
energy contributions by power-series methods and by
definition of effective frequencies that take into
account the leading anharmonic corrections under the
assumption that anharmonic terms are small’’ (see
Ref. [35] for the appropriate references). It is worth
mentioning that computation of high-order deriva-
tives of a potential with respect to Qr at a fixed
value of the reaction coordinate sr is simplified by
the fact that each kth-order derivative with respect to
Qr is a superposition of only kth-order deriva-
tives with respect to r (contrary to a general trans-
formation of derivatives from one set of coordinates

to another, which also contains all lower-order deriv-
atives).

Conclusions

It is proven that the Jackels–Gu–Truhlar projection
technique is equivalent to choosing a reaction coor-
dinate sr of a special type, which depends on the
particular choice of internal variables r. Since the
reaction coordinate satisfies the local Hofacker–Mar-
cus conditions, there is no linear term in a Taylor
expansion of the potential in terms of vibrational
coordinates Qr. Potential anharmonicities can be then
taken into account either via the INM approximation
[34, 35] or via the Dunham formula for the quantized
total energy [36].
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